Differential expression of novel naturally occurring splice variants of PTEN and their functional consequences in Cowden syndrome and sporadic breast cancer.
نویسندگان
چکیده
PTEN, a dual-phosphatase tumor suppressor, is inactivated in Cowden syndrome (CS), characterized by high risk of breast and thyroid cancer, and in variety of sporadic cancers. Despite the importance of alternative splicing, very limited information on its role in PTEN and associated cancers is available. We identified eight novel PTEN splice variants (SVs) that retained intron 3 regions (3a, 3b, 3c); intron 5 regions (5a, 5b, 5c); excluded part of exon 5 (DelE5) or all of exon 6 (DelE6), respectively. Analysis of SVs in 12 sporadic breast cancers revealed full-length (FL)-PTEN transcript reduction in 10; SVs 3b, 3c and 5c not expressed in 7, 6 and 4, respectively, and under-expressed in the rest. In contrast, SV-5b was over-expressed in breast cancers. PTEN SV analysis in 16 CS/CS-like patients and eight controls revealed that SV-5a is under-expressed and SV-3a over-expressed in the germline of CS/CS-like individuals when compared with controls. Although SV-5a expression decreased P-Akt level and cyclin D1 promoter activity, SVs 5b and 5c increased cyclin D1 promoter activity. Thus, SV-5a behaving like FL-PTEN corroborates our observation that SV-5a is under-expressed in CS when compared with controls. Similarly, SV-5b functionally counters PTEN's action and is over-expressed in sporadic breast cancers. Furthermore, we demonstrate that expression of these SVs is under the regulation of p53. Our observations suggest that differential expression of PTEN and its SVs could play a role in the pathogenesis of sporadic breast cancers and CS, and may lend a novel way of making a rapid molecular diagnosis of CS without mutation analysis.
منابع مشابه
Pharmacogenomic Profiling of the PI3K/PTEN Pathway in Sporadic Breast Cancer
Background: Pharmacogenomics is the study of genetic variations among individuals to predict the probability that a patient will respond to single or multidrug chemotherapy. Breast cancer is one of the most common cancers among women worldwide. Treatment of breast cancer by application of biological rationales gives us the ability to match the correct pharmacology to individual tumour genetic p...
متن کاملMutation analysis of the putative tumor suppressor gene PTEN/MMAC1 in primary breast carcinomas.
A novel gene was identified recently at chromosome 10q23, named PTEN or MMAC1, and based on several criteria it was designated as a potential human tumor suppressor gene. Loss of heterozygosity affecting this region of 10q is observed in several cancer types, especially glioblastoma, and inactivating mutations of the PTEN/MMAC1 gene are found in some of these cancers as well as cell lines and x...
متن کاملPTEN autoregulates its expression by stabilization of p53 in a phosphatase-independent manner.
PTEN (phosphatase and tensin homologue, deleted on chromosome 10) is a tumor suppressor with dual phosphatase activity and mutations of its gene, PTEN, have been associated with many sporadic cancers and heritable neoplasia syndromes, including Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome. However, accumulating evidence now shows that PTEN may have novel functions other than as a phosp...
متن کاملSNHG6 203 Transcript Could be Applied as an Auxiliary Factor for more Precise Staging of Breast Cancer
Background: Nowadays long non-coding RNAs are known as interesting functional part of the transcriptome. LncRNA SNHG6 was reported to be expressed more in breast cancer tissues than non-tumor ones. As a frequent cancer among women, breast cancer treatment needs applied biomarkers for fast prognosis and diagnosis. SNHG6 RNA and its splice variants could be considered as molecula...
متن کاملGermline and somatic KLLN alterations in breast cancer dysregulate G2 arrest.
PTEN is a well-described predisposition gene for Cowden syndrome (CS), a familial cancer syndrome characterized by a high risk of breast and other cancers. KLLN, which shares a bidirectional promoter with PTEN, causes cell cycle arrest and apoptosis. We previously identified germline hypermethylation of the KLLN promoter in 37% of PTEN mutation-negative CS/CS-like (CSL) patients. Patients with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 15 5 شماره
صفحات -
تاریخ انتشار 2006